HTW Berlin (University of Applied Sciences) WS 2010/2011

Media and Computing (Master)
Faculty of Business Sciences 11

Paper

Analysis of audio synthesis possibilities

on mobile devices using the Apple
iPhone and iPad

Markus Konrad

March 26, 2011
Supervising tutor:
Prof. Dr. Klaus Jung

Contents

1. Introduction 2
1.1. Fundamentals 2
1.2. Overview about available audio synthesis libraries 2
1.3. Methodology 3

2. Analysed Software-Libriaries 4
2.1. Core Audio 4

2.1.1. Core Audio concepts 4
2.1.2. Core Audio in practice 5
2.1.3. Results. 10
22, LibPd 11
2.2.1. LibPd concepts 12
2.2.2. LibPd in practice 14
223. Results. 20
2.3. Other libraries 22
2.3.1. MoMu / Synthesis ToolKit 22
2.3.2. CocosDenshion 23

3. Conclusion 24

4. Appendix 25

A. References 25

B. Example projects 27
B.1. iPhoneAudioSimple.zip 27
B.2. iPhoneAudioBending.zip 27
B.3. iPhoneAudioBendingMultiwaves.zip 27
B.4. PdAudioSimple.zip 27
B.5. PdAudioBending.zipo 27
B.6. PdSoundEngine.zip o 27
B.7. MoMuTest.zip 28

1. Introduction

This paper covers the topic of real-time audio synthesis on mobile Apple devices like the
iPhone or the iPad (108 devices). Such mobile multi-touch devices introduced an inter-
esting new kind of user interaction and user experience. Applying them to the music con-
text, can create an exciting new world of musical instruments.

Unfortunately, only very little information exists until now (March 2011) about audio
synthesis on iOS devices. There is only one book that will cover this topic in a few
chapters and this book will not be released before August 2011 [KC11]. Therefore I
hope that this paper brings some light into the darkness. It analyses existing tech-
niques and libraries for these devices and describes the advantages and disadvantages
of the chosen libraries. Short examples of how to use them will be given. Two of
the introduced libraries, namely LibPd and Core Audio, will be covered in more de-
tail.

The paper concludes with an overall estimation about the audio synthesis possibilities
of i0S devices. The appendix consists of some example applications that implement the
mentioned techniques.

1.1. Fundamentals

This paper assumes, that the reader is familiar with topics like programming and digital
signal processing (DSP) and knows basic terms and definitions of both fields. An under-
standing of programming languages like C, C++ and Objective-C is recommended but
not necessary, because the source code excerpts, where given, are always documented
and described in the paragraphs next to them. For the section about LibPd, a basic
understanding of visual data flow languages like Pure Data or Maz/MSP can be helpful,
but again is not necessary. Books like Designing Sound [Far10] or loadbang [Kre09a]
provide both an overview about DSP and also give practical examples using Pure Data,
whereas for example The Computer Music Tutorial [Roa96] is more theoretical but offers
profound information about DSP in general.

1.2. Overview about available audio synthesis
libraries

As already stated in the introduction of this document, there is few information about
audio synthesis on iOS devices and this does also apply to the amount of available soft-
ware libraries for this field of application. Nevertheless a few interesting libraries could be
found for this topic and table 1 gives an overview about them.

As already said, Core Audio and LibPd will be covered in more detail. The first has
been chosen because it is Apple’s standard interface for everything concerning audio on

Library Approach/Features

Core Audio Low-level APIL. Allows to generate audio by writing samples into
an audio buffer.

LibPd Uses PureData patches that describe control and signal data flow
for audio synthesis. Writes audio samples Core Audio’s buffers.

MoMu/STK Provides a collection of audio synthesis algorithms using the Syn-
thesis ToolKit. Writes audio samples into Core Audio’s buffers.

CocosDenshion No real audio synthesis functionality, but provides easy audio
file sampling. Pitch and gain of the samples can be controlled.

Table 1: Available audio synthesis libraries on the iOS platform

their mobile and desktop devices. Although it is not very well documented and does not
provide many features, it is important because it is the entry point for audio synthesis
on iOS devices. Every other library uses Core Audio’s API for audio rendering and
so does LibPd, which is a very interesting library because it allows to embed so called
“patches” made with the visual programming language PureData into iOS applications.
This is a more high-level approach in comparison to Core Audio, because it allows the
developer to design control and signal data flow with a visual tool. Furthermore, a lot
of signal processing algorithms are provided in PureData’s extensive library of functions
or “objects”.

Whereas the first two libraries have been compared in more detail, including example
applications and CPU/memory load profiling, for the other two libraries, CocosDen-
shion and MoMu/STK, only basic research has been done in section 2.3. It turned
out that CocosDenshion does not provide audio synthesis functionality but still is use-
ful for audio sample playback. MoMu/STK is a new and interesting mobile variant
of the widely known Synthesis ToolKit from Stanford University, but unfortunately
appeared a bit too late in the research process of this paper to cover it in more de-
tail.

1.3. Methodology

To compare existing software libraries for audio synthesis on iOS devices, each of them
has been analyzed in terms of features, documentation, community support and other
available information resources. Furthermore, the performance of Core Audio and LibPd
has been tested using the profiling tool Instruments on an iPad 1. For these test runs,
comparable applications have been created using available techniques from the two li-

braries. Conclusively, a step sequencer application has been created as some kind of
“field test” for LibPd.

2. Analysed Software-Libriaries

2.1. Core Audio

As stated in Apple’s Developer Documentation, “Core Audio capabilities include record-
ing, playback, sound effects, positioning, format conversion, and file stream parsing”
[AI11d]. Audio synthesis and other advanced functions are reserved to Mac OSX versions
of the library. This means it provides only low-level access to audio rendering in case of
i0S applications. Core Audio (CA) sits on top of the Hardware Abstraction Layer (HAL)
and thus receives/sends signals from/to the hardware through HAL [Al11e], so there is no
need for the developer to deal with hardware and drivers.

CA provides very sophisticated but complex APIs and the first step to get even simple
audio synthesis working, already requires a lot of knowledge. Besides the official Apple
documentation, there are fortunately a few articles on the internet that cover this topic
and provide a clearer overview than the official documentation (see for example [Bol10]
or [Ada09]).

A word about Core MIDI, which has been introduced in November 2010 for iOS 4.2:
This framework enables iOS devices to send and receive MIDI data, for example via
Apple’s Camera Connection Kit. It does not include virtual instruments, i.e. its pur-
pose is clearly not the interpretation and audio rendering of MIDI data, but only
the transportation. Therefore this library will not be further analyzed in this pa-
per.

2.1.1. Core Audio concepts

Core Audio uses a very sophisticated concept of Audio Nodes, that allows developers to
create chains of digital signal processors (DSPs), so called Audio Units. Audio Units can
be low-level things like oscillators or filters, but can also be whole virtual instruments or
effects. As already mentioned, under Mac OSX a lot of such Audio Units already exist.
iOS, unfortunately, does not have such a luxurious extra equipment and therefore one
has to develop DSP units him- or herself.

The first step for using audio in- and output on an iOS device is always to set up an Audio
Session. Audio Sessions are an i0S specific concept: They let the developer configure
the “audio behavior at the application, interapplication, and device levels” [Allla],
which means that one can define what should happen for example when there is a
phone call coming in or when iPod audio playback runs in the background. It also
provides interrupt handling for these cases and “audio route change handling” which
means that the developer can define behaviors for cases like plugging in or unplugging
headphones.

i0S device

1 Your

application

Configuration

and control Audio sent to

output hardware

Audio sent to audio
processing graph

RS | | |
.1 o _'_ Lo r
- k !
-~ - i .
st Pl ! \‘.
~ . T
}_.)f : \\\
Je* : "L
—— > EQunit /| i i
g, \i b
2 P
7 Mixer unit [11O unit
.d o
=ty
s EQ unit
Audio processing graph

Figure 1: Example of an Audio Unit graph [All1c]

The next step is to create the already mentioned chain or graph of DSPs made of Audio
Units as for example seen in figure 1. Some basic Audio Units for input/output, mixing,
equalizing and voice processing already exist [Alllc], but for audio synthesis they are
not really needed. So the approach for audio synthesis via Core Audio on an iOS device
is to set up a very basic Audio Unit graph, that can not really be called a “graph”, since
it only consists of one Audio Unit: The remote I/O unit. This Audio Unit receives an
input audio buffer and overwrites it with new data for the output for each single audio
sample. Each Audio Unit has several properties for configuring its behavior. One of it is
the render callback property that allows to set a specify callback function that is called
within this Audio Unit. As seen in figure 2, it sits between in the in- and the output
channel and therefore can be used to analyze the audio buffer from the input and to fill
it with newly generated samples for the output.

The next section will describe how to use Audio Sessions, Audio Units and a render
callback function in practice.

2.1.2. Core Audio in practice
Creating a simple application

In terms of audio synthesis programming, creating an application that generates a 440Hz
sine wave tone is like creating a Hello World application. Appendix B.1 provides the

Microphone input

U

i N
i Ty
Input Buffer
L. r
i ™y
Render callback function
h S
e Ny
Output Buffer
b, v,
Remote | YO Audio UnItJ

e

Audio ouput

Figure 2: Simple Audio Unit graph for audio synthesis

XCode project example named iPhoneAudioSimple. All important implementations con-
cerning audio synthesis are in a class AudioController. This section will go through
the necessary steps of initializing an Audio Session, setting up and configuring an Audio
Unit and writing the audio buffer in a render callback function. It will focus on the
most important lines of code, since setting up Audio Sessions and Units already takes
up about 200 lines of code. Most of the code comes from the LibPd project, described
in section 2.2 and has been modified where necessary.

The first step is to create an Audio Session and set an Audio Session Category. Such a
category expresses the audio role of your application and therefore the main behavior.
A table in the Apple documentation [AI11b] gives an overview about these categories.
Since audio playback is of primary importance for an audio synthesis application, the
categories AVAudioSessionCategoryPlayback (for output only) and -PlayAndRecord
(for in- and output) are the ones to choose:

// initialize and set session interrupt listener method

AudioSessionlInitialize (NULL, NULL, audioSessionInterruptListener , self);

// set audio session category

AudioSessionSetProperty (kAudioSessionProperty_AudioCategory , sizeof(
kAudioSessionCategory_PlayAndRecord) ,
kAudioSessionCategory_PlayAndRecord) ;

After that, further attributes of the audio session will be requested. Note that they

really only will be requested and not directly set, since Core Audio itself will set the best
possible values for the requested ones. The next attribute to be requested is the sample
rate. The usual rate is 44.1kHz so that the full spectrum of audible frequencies can be
generated:

Float64 sampleRate = 44100.0;
AudioSessionSetProperty (kAudioSessionProperty_PreferredHardwareSampleRate ,
sizeof (sampleRate), &sampleRate);

The next configuration step is to define the size of the audio buffer. This is a very
important step, since it also defines the latency. The smaller the buffer, the smaller
the latency but the higher CPU usage because the audio render function is called more
often, which creates more overhead. The latency or buffer duration can be calculated
in milliseconds as duration = size/sampleRate * 1000. This also done for setting the
buffer duration property for the Audio Session:

Float32 bufferSize = 4096;

Float32 bufferDuration = (bufferSize + 0.5) / kSampleRate;

AudioSessionSetProperty (
kAudioSessionProperty_PreferredHardwareIOBufferDuration , sizeof(
bufferDuration), bufferDuration);

The last step is to set the session active with AudioSessionSetActive(true). Now all
requested properties will be evaluated and the best possible values will be taken.

Initializing the Audio Unit even means setting more parameters. It basically follows the
same principles of requesting parameters to be set, for example the number of in- and
output channels, the audio format (bits and sample rate per channel) and so on. It is
best to have a look at the method initAudioUnit in AudioController, which includes
very good documented code by the LibPd project. The most important lines are the
ones where the audio render callback function is set:

// register the render callback. This is the function that the audio unit
calls when it needs audio

AURenderCallbackStruct renderCallbackStruct;

renderCallbackStruct .inputProc = renderCallback;

renderCallbackStruct .inputProcRefCon = self; // pass the AudioController

// set the property

AudioUnitSetProperty (audioUnit , kAudioUnitProperty_SetRenderCallback ,
kAudioUnitScope_Input, outputBus, &renderCallbackStruct, sizeof(
renderCallbackStruct));

All this hard work of setting up the Audio Session and Unit finally leads to the heart of
the audio synthesis process: The audio render callback function, which is called every
time when new audio data is requested from the hardware. The function header is
defined as follows:

static OSStatus renderCallback (void *inRefCon, AudioUnitRenderActionFlags
xioActionFlags , const AudioTimeStamp *inTimeStamp, UInt32 inBusNumber,
UInt32 inNumberFrames, AudioBufferList xioData);

The most important parameters are the following:

inRefCon Is a pointer provided in the renderCallbackStruct above. In this case it is
the AudioController object. It allows access to the public members of AudioCon-
troller. The variable audioCtrl is later used in code snippets for that.

inNumberFrames Contains the size of the buffer for one channel.

ioData Contains a pointer to the audio buffer with interleaved audio samples.

Generating a sine wave and writing the data into the buffer is now quite simple. A loop
goes through every sample in the short-buffer (short type because the audio format
was set to 16 bit) and generates new values as sinus value multiplied with a maximum
amplitude and then converted from float to short by multiplying the maximum value
for a short, which is 32767. A new phase for the sine wave is calculated at the end of
each loop:

// get the buffer
short xshortBuffer = (short %) ioData—>mBuffers[0].mData;

// calculate buffer size
int bufLength = inNumberFrames x* kNumOuputChannels;

// Loop through the callback buffer, generating samples
for (UInt32 i = 0; i < bufLength; i++) {
// write a new sample
shortBuffer[i] = (short)(sin(audioCtrl—>sinPhase) * audioCtrl—
masterVolume * 32767.0f);
// calculate the phase for the next sample
audioCtrl—>sinPhase += M_PI % audioCtrl—>sinFreq / kSampleRate;

// Reset the phase value to prevent the float from overflowing
if (audioCtrl—sinPhase > 2.0f % M_PI)
audioCtrl—>sinPhase —= 2.0f « M_PI;

Creating a more complex application

The second test application, iPhoneAudioBending (appendix B.2), consists of an iPhone
App that allows to hit a note that will be played with a simple synthesizer with ampli-
tude modulation. By tilting the device, the sound will change: Tilting it to the left and
right will change the stereo position of the sound, tilting it up and down will change the
frequency of the amplitude modulation.

The most important thing is the modified render callback function. First of all, a simple
envelope is generated to increase or decrease the sound of a note when it is hit or

respectively released!. This is made using timestamps for the “note on” and “note off”
times:

// Ramp up
if (audioCtrl—>noteOnTs > 0) {
audioCtrl—>volEnvelopeAmp = (now—audioCtrl—>noteOnTs)/audioCtrl—>rampUp;
// rampUp is a value in milliseconds
if (audioCtrl—volEnvelopeAmp >= 1.0f) { // full amplitude
audioCtrl—>volEnvelopeAmp = 1.0f;
audioCtrl—>noteOnTs = 0; // stop ramp up now

}
}

The new audio buffer loop is also modified. At first, the volume for the current channel
is set for the stereo effect. The buffer is interleaved, which means that every even sample
index belongs to the left stereo channel, every odd sample index to the right channel.
The new sample is calculated by multiplying the sine wave with another sine wave for
amplitude modulation and further multiplying it with amplitudes for channel volume,
envelope and master volume:

// calculate the phase increase for the next sample
float sinPhaselncr = M_PI x audioCtrl—>sinFreq / kSampleRate;
float ampModPhaseIncr = M_PI * audioCtrl—>ampModFreq / kSampleRate;
// calculate volume and float to short conversion outside of the loop
float volumeMultiplications = 32767.0f % audioCtrl—>volEnvelopeAmp =
audioCtrl—>masterVolume;
for (UInt32 i = 0; i < bufLength; i++) {
channelVolume = (i % 2 = 0) ? audioCtrl—>volumeLeft : audioCtrl—>
volumeRight; // choose the wolume for the channel
// write a new sample
shortBuffer[i] = (short)(sin(audioCtrl—>sinPhase) * sin(audioCtrl—
ampModPhase) * volumeMultiplications % channelVolume);

// calculate the phase for the next sample
audioCtrl—>sinPhase += sinPhaselncr;
audioCtrl—ampModPhase += ampModPhaselncr;

// Reset the phase wvalue to prevent the float from overflowing
if (audioCtrl—>sinPhase > 2.0f % M_PI)
audioCtrl—>sinPhase —= 2.0f * M_PI;
if (audioCtrl-—>ampModPhase > 2.0f % M_PI)
audioCtrl—>ampModPhase —= 2.0f x M_PI;

It is clear, that different signal processing algorithms like envelopes or modulation should

'For sake of simplicity, no interpolation has been implemented here.

be moved to separate classes or functions, otherwise the renderCallback () method will
become confusing.

2.1.3. Results

Performance tests have been run on the given two applications using Apple’s Instruments
profiler and an iPad 1. The average memory usage of iPhoneAudioSimple was 3.4 MB,
whereas the average CPU usage was 11%. iPhoneAudioBending took 4.2 MB memory in
average and caused 27% CPU load. Of course not all of the CPU load is caused by audio
synthesis, since a simple GUI and accelerometer methods are also implemented, but tests
showed, that this caused only about 3% CPU usage.

Another small test has been made, where iPhoneAudioBending was modified so that
multiple detuned sinoidal waves were generated and summed (additive synthesis), which
had a heavy impact on the CPU load. It was observed, that there is a linear increase of
CPU load by about 4% for each sine wave. The amount of 5 waves caused about 24%
CPU load, whereas 20 waves caused 82%. With 22 waves the application began to react
very slowly and audible clicks and flaws occurred. 25 waves caused the audio system to
give up and not produce any sound. An optimized version of the render callback loop
was created that used a sine wave table with 256 precalculated sine values, instead of
calling the sin() function in each loop and calculating the sine values directly.? This
application, included in appendix B.3, used less than the half of the CPU load that
the unoptimized version needed. Therefore even with 50 sine waves being rendered, the
CPU load was at about 75%.

As stated at the beginning of this paper, not only performance is important for using
a specific library in a software project, but also documentation, features and commu-
nity support. It was already shown that there is only basic documentation about Core
Audio from Apple and not much information from other web resources. This is basi-
cally because in terms of audio synthesis, Core Audio does not really implement any
needed helping features for developers besides giving the programmer the opportunity
to implement own audio synthesis algorithms in the render callback loop. There are no
already implemented algorithms or Audio Units for audio synthesis from Apple for the
iOS platform.

Luckily, there is an open-source project mobilesynth® that includes a lot of often needed
algorithms and patterns. Of course it is difficult to get into the not often good docu-
mented source-code, but it can be a good starting point for learning to do audio synthesis
with Core Audio. The later in section 2.3.1 discussed library MoMu/STK also offers
such features and is better documented.

2Note that this is only a very basic implementation without interpolation or the like.
3See project homepage http://code.google.com/p/mobilesynth/

10

http://code.google.com/p/mobilesynth/

2.2. LibPd

One of the most interesting library for audio synthesis on mobile devices so far is LibPd,
which “wraps Miller Puckette’s PureData and turns it into a signal processing library”
[Lpm11la).

PureData itself is a “real-time graphical programming environment for audio, video, and
graphical processing” [HPH*11]. A graphical editor allows the developer to design data
flow processes that can generate audio or video output. These small programs are then
called “patches”, because the data flow is created by linking or “patching” together
functions or “objects”. A patch is basically a simple text file (with .pd as file name
extension) that contains only the information about which objects are connected with
each other. See figure 3 as an example of a simple patch.

|usn~ 440|

osCc~ 1

LE"

*. 0.8

dac-

Figure 3: PureData example patch for amplitude modulation

In contrast to the program PureData, which can be used to create and execute such
patches, LibPd is a library that can be integrated into iOS and Android applications
to load these patches and use them as a digital signal processor for real-time audio
rendering. Therefore it is not necessary anymore to implement functions to calculate
every audio sample like in Core Audio, because in PureData such functions already
exist. They are called “PureData objects” (typically written as [object], e.g. [osc™]
which is a simple sine wave oscillator that is also used in figure 3) and provide basic
signal processing methods. There are sine-wave and saw-tooth oscillators as well as
band filters and much more useful functions for audio synthesis. It is also possible to
use the microphone input of the device within a PureData patch via LibPd. Apps using
LibPd run well on devices using armv7-CPUs (iPad, iPhone 3GS and 4, iPod 3rd and
4th generation) and with some limitations (no microphone input, less performance) also
on all armv6-devices [Lpm11b].

11

One of the most popular examples of LibPd in action are RjDj* and Inception The App?,
which both use the same underlying techniques: LibPd with special “externals”, self-
written extensions for PureData.® The app interactively generates a “personal sound-
track” for the user, while he or she walks with an iPhone through the surroundings.
Depending on the environment the sound changes. In nature, for example, the music
that is generated live is very calm whereas in the streets of a big town in becomes
more hectic. This is done by analyzing the sounds of the environment via microphone
input, as well as other sensor data like from the accelerometer of the iPhone. After
that, new sounds are generated or existing sound is alienated, depending on this input
data and on the “scenes”. There are lots of different “scenes”, which means different

generative pieces of music, some of them done by famous musicians like, for example,
AIR [RjD11].

Just like PureData, LibPd is released under BSD license. Some externals like [expr~]
are under GPL, but do need to be compiled to run most PureData patches. The docu-
mentation for LibPd does exist as a Wiki at [Lpm11b], that describes the usage of the
only two classes that are needed to set up a project for an iOS device with LibPd. An
active online community exists at noisepages.com.” There is extensive information and
a lot of tutorials for PureData on the web (see [HPH'11, Kre09b, Puc06]) and in liter-
ature (see [Kre09a,Far10]). Community support and further information can be found
on http://puredata.info.

2.2.1. LibPd concepts

As visible in figure 4, LibPd sits on top of CoreAudio and generates samples which
are used in the renderCallback-function (as described in section 2.1.2). It does this
by loading a PureData patch, analyzing its contents and calculating the resulting data
flow “inside” the patch. There is also a bidirectional communication possible between
an application using LibPd and a PureData patch: Messages can be sent to patches to
control the behavior of a patch (and thereby, for example, change the audio output) and
can also be received from patches for control, feedback and debugging purposes. This
will be described in more detail in section 2.2.2.

A key concept of LibPd is that every patch, given that it uses standard PureData-
objects, that runs in the PureData program, should also run successfully with LibPd on
one of the supported devices without modifications. This means that “input and output
of samples occur via [adc™] and [dac”], as usual”® [Lpmllb]. There are no special
LibPd objects to use in the PureData patches.

4See http://rjdj.me/

See http://inceptiontheapp.com/

5The externals for RjDj are open-source and can be found on https://github.com/rjdj/rjlib

"See http://noisepages.com/groups/pd-everywhere/

8The objects “adc” and “dac” are analog-to-digital, respectively digital-to-analog converters in Pure-
Data, which means the first is the microphone input, the second the audio output.

12

http://puredata.info
http://rjdj.me/
http://inceptiontheapp.com/
https://github.com/rjdj/rjlib
http://noisepages.com/groups/pd-everywhere/

Microphone |nput =<—— Audio signals

- ---- Control messages
CoreAudio
h J i
LibPd gendireceive | oong g
<—|—[»
L]
L]
CoreAudio

. Audio Qutput

Figure 4: LibPd integration into an iOS app

LibPd consists of a set of functions written in C. Fortunately, there is an Objective-C
interface for LibPd, which is very compact and straight forward: There are only two
Objective-C classes and one protocol. The PdAudio class implements the “glue code”
between Core Audio and LibPd, whereas PdBase is a class with static functions that are
basically wrappers for the 1ibpd_*-C-functions. PdBase allows to send control messages
to PureData-patches. It is also possible to set a delegate object that implements the
PdReceiverDelegate protocol. This delegate can then receive control messages that
are sent by a PureData-patch.

Although PureData comes with a large set of objects that can be combined in patches
to complex data flow sceneries, it is sometimes necessary to write self-made primi-
tives, so called “externals” and therefore extend PureData with new objects. Such
externals can be written in C, using the PureData externals APL® Writing externals
is not an easy task, but enables the developer to implement functions that are very
hard to actualize in an efficient way with a PureData patch without externals. With
LibPd it is possible to use this compiled C-language externals on iOS devices as a
statically linked library. Loading externals dynamically is only possible on Android

9See http://pdstatic.iem.at/externals—HOWTO/ for a comprehensive overview about the API.

13

http://pdstatic.iem.at/externals-HOWTO/

devices [Lpm11b].

2.2.2. LibPd in practice
Setting up LibPd

Setting up LibPd to compile is not as straight-forward as using it: After cloning it
from the Git repository!'®, one has to copy the folder “libpd” to the project directory
and include it in the XCode-project. LibPd comes with support for Android platforms
and Python. A lot of these files are not needed and even prevent from compiling it
successfully. Therefore it is necessary to remove the following folders and files from the

folder “libpd” in XCode:

e pure-data/extra

e python

e samples

e libpd_wrapper/z_jni.h & z_jni.c

Furthermore, the Audio Toolbox-Framework needs to be added to XCode and the follow-
ing compiler macros must be defined either in the project settings or in the prefix header
file:

#define PD

#define USA_APIDUMMY
#define HAVE_LIBDL
#define HAVE_UNISTD_H

Creating a simple application

A very simple application could just load a PureData-patch and start it. As a small
demonstration, appendix B.4 (PdAudioSimple) contains such a simple XCode-project
with an iPhone App that produces a sine wave at 440Hz. The master volume can be
controlled with a slider. All necessary functions are implemented in the view controller
of the application, PdAudioSimpleViewController. The method viewDidLoad con-
tains the initialization process for LibPd. At first, a PdAudio object is created with the
necessary parameters:

0The Git repository of LibPd is located at git://gitorious.org/pdlib/pd-for-ios.git.

14

git://gitorious.org/pdlib/pd-for-ios.git

— (void)viewDidLoad {

pdAudio = [[PdAudio alloc] initWithSampleRate:44100.0
andTicksPerBuffer:64
andNumberOfInputChannels:0
andNumberOfOutputChannels:2];

}

This means that LibPd will produce sound for 2 output channels (i.e. stereo) with
the default sample rate of 44.1kHz. Input channels, i.e. microphone input, will not be
used. The ticksPerBuffer parameter is important regarding audio rendering perfor-
mance and latency: The parameter defines how often a “Pd tick” is called per audio
rendering call [Lpm11b]. One “Pd tick” produces always 64 audio samples per chan-
nel.!! Setting the ticksPerBuffer parameter to a very small number therefore leads
to much smaller audio latency, but also increases the number of “Pd tick” calls, which
leads to more function-call overhead and eventually to higher CPU and memory us-
age.

The next step in terms of initialization is to set the PdReceiverDelegate for PdBase as
described in section 2.2.1. The view controller PdAudioSimpleViewController imple-
ments the method receivePrint: of the PdReceiverDelegate protocol and therefore
will be informed when a [print]-message is sent from within the PureData-patch.

— (void)viewDidLoad {
[PdBase setDelegate:self];
}
— (void)receivePrint : (NSString #*)message {
NSLog (@” Print .from _Pd: .%Q” , message) ;
}

—_—
0SC~ 448 r master_vol
F

Figure 5: PureData patch “audio_out.pd” for PdAudioSimple

1Do not confuse the fixed number of audio samples per “Pd tick” (64 samples) with the ticksPerBuffer
parameter, which is in this example also 64.

15

The last step within viewDidLoad is to load the patch and start up the audio rendering.
The patch “audio_out.pd” will be loaded, which only contains a simple sine-wave oscilla-
tor and a receiver [r master_vol]'? as shown in figure 5.

— (void)viewDidLoad {

// open patch located in app bundle
[PdBase openPatch :[[[NSBundle mainBundle] bundlePath]
stringByAppendingPathComponent :@Q” audio_out .pd”]];

// start audio rendering
[PdBase computeAudio:YES];
[pdAudio play];

Sending messages to the PureData-patch is very straight-forward, as demonstrated by
the example of sending the “master volume slider”-value to the receiver master_vol in
the patch:

— (IBAction)masterVolSliderChanged :(id)sender {
UlSlider xslider = (UISlider x)sender;
[PdBase sendFloat:slider.value toReceiver:@ master_vol”|;

Creating a more complex application

The second test application, which is called PdAudioBending and is included in appendix
B.5, has the same features as iPhoneAudioBending in section 2.1.2 and has been created
for comparison.

The PureData-patch that has been created is slightly more complex as shown in figures
6 and 7. The patch can now receive “note”-messages, a simple pair of pitch and velocity
arguments just like MIDI-notes. There are also “bend” messages with a bending-value
(used when tilting the device). A note with a velocity of 0 acts as a note off message
and mutes the note. An ADSR-envelope!® is used to define the loudness of the note over
time.

On the Objective-C side, not much has changed: Now a note will be constructed with
pitch and velocity values and will be sent to the patch upon playNote:-action. There is
also a stopNote:-action sending a note with a velocity of 0.

124 49 a shortcut for “receive”.

13ADSR stands for attack, decay, sustain, release that is used to create characteristic amplitudes over
time.

16

r note_in 1. Receiwve messages from note_in

Z. Route the two message types:

route note bend
— = = "note” messages to the left,

e s

o Hh\“x "bend” messages to the right

=

unpack f f = 15
L=
-
<

_ _d_gnpmd 51

mtof £ 128 e

j;--anpmd,_ 3. The subpatch "ampmod~" implements

T™ the omplitude modulotion

r master_wvol
Loadbang Lloadbang

is done here
- t b f thbf
= =

r stereo_bend r stereo_bend 4. Sterec bending
s s

4]

i

Jus

<>

dac~

Figure 6: PureData patch “audio_out.pd” for PdAudioBending

— (IBAction)playNote:(id)sender {

// create note arguments: MIDI-note with pitch 64 and velocity of 90
NSArray xnoteData = [NSArray arrayWithObjects : [NSNumber
numberWithFloat:64.0f], [NSNumber numberWithFloat:90.0f], nil];
[PdBase sendMessage:@’ note” // send a "note” message to "note_in”
withArguments:noteData
toReceiver:@ note_in” |;

Sending the bend-values to change the sound upon tilting the device follows the same
principles. Apple’s UTAccelerometerDelegate is used to get informed about how the
device is tilted and then the accelerator values are sent to the correspondending re-
ceivers in the patch. It would be wise to implement a threshold for value changes,
so that only values that have really changed by a specific magnitude are sent to the

patch.

— (void)accelerometer:(UTAccelerometer *)accelerometer didAccelerate :(
UlIAcceleration #x)acceleration {

//

17

if (notePlaying) {
[PdBase sendMessage:@ bend” // send synth bending messages
withArguments : [NSArray arrayWithObject : [NSNumber

numberWithFloat: accelY]]
toReceiver :@ note_in” |;

}

// send stereo bending values

[PdBase sendFloat:accelX toReceiver:@”stereo_bend”];

The code is straight-forward and the separation of tasks is clear: The created Objective-
C code takes care about user interaction and, if needed, sends messages to the PureData
patch which is responsible for audio synthesis.

inlet Freguency inlet inlet| Amplitude inlet (1..8)
;E-hu-te nnp-ij—:i T
dd_.-"' -\"\-\.___E
Base freg. sig~ sig~ AM freg.
- L =
05C~ [
= t ff
- 12 = I
__,---’"'F- select @
T _— Create ADSR env. I
== = = = = =
adsr~ 1 18 209 58 589 ack’@ 158
_iinef
LI
’.;-u
'c-:-utlet~

Figure 7: Subpatch “ampmod” for PdAudioBending

Creating a step sequencer application

To test the performance of LibPd, a step-sequencer application has been created and
is included as appendix B.6. The GUI of the application allows to place notes on a
matrix that can be seen in figure 8. The notes are played from left to right. A pen-
tatonic scale is used to create the pitch of a note on the Y-axis of the matrix. It is
possible to create notes on different layers with two different instruments. The “>” and
“<” buttons on the top of the screen allow to switch between the layers, the button in
the lower left lets the user change the instrument. Of course such an application could

18

have been implemented using audio sample playback, but as already said, this applica-
tion has only the purpose of testing the performance for real-time audio synthesis with
LibPd.

O5-Simulator - iPad [i0S 4.2 (BC134)

Figure 8: Step-Sequencer GUI for PdSoundEngine

Once again, the Objective-C classes take care about the Controller-side of the applica-
tion, meaning that on this side the user interaction and the sequencer timing functions
are implemented. Although it would also be possible to implement the sequencer tim-
ing functions in the PureData patch, it was more reasonable to implement them in
Objective-C, as this code gets compiled whereas the PureData patch is interpreted at
run-time, making it less efficient. As already introduced in the PdAudioBending appli-
cation, MIDI notes consisting of pitch and velocity are used for communication between
the Objective-C code in the iOS application and the PureData patch. This makes it
easier to switch from LibPd to another audio rendering backend or even send the MIDI
notes via CoreMIDI to a real hardware synthesizer.

For this paper it is not so interesting how the Objective-C classes for the sequencer and
the user interaction are implemented, but how the PureData patches are constructed.
One of the main problems was polyphony, meaning that more than one note can be played
at one time. There is an object [poly] that enables polyphony for PureData, but it
is not very easy to use. Fortunately there is an abstraction'® [polypoly] that makes

14« Abhstractions” are nothing else but extra PureData patches that can be used like a normal object
(just like “externals” but not written in C).

19

\[r note Receive note message: <instrument> <pitchs <velocity=

=
route classicsub_instr sow_instr, Route it to an instrument
= =

~
N
! BN

Iﬂlypﬁly B 1 cTussi.csuh_i.nstr'

-~

dac~

lypoly 6 1 suw_inst? Can play
up to &
volces for
each instrument

r master_vol
——

/

Figure 9: Patch “poly_seq.pd” for polyphonic sequencer

polyphony much easier to use than with the default [poly] object. Figure 9 shows
how [polypoly] is used for two instruments that are implemented in other patches,
respectively “classicsub_instr.pd”!® and “saw_instr.pd”. These instruments receive MIDI
notes from [polypoly] and produce the audio signals.

2.2.3. Results

For simple applications like the first two, the results are quite positive. The CPU
load for PdAudioSimple is interestingly a bit lower than in the comparable application
that uses Core Audio: only 6%. But another process that seems to be connected with
the audio system, “mediaserverd”, uses about 5% more than in iPhoneAudioSimple and
therefore the summed up CPU load is about the same in both applications. The memory
usage in PdAudioSimple is with 3.8 MB a bit higher, compared to 3.4 MB using Core
Audio without LibPd. The same was experienced with application number two: Here
the memory usage was again a bit higher, in particular 4.5 compared to 4.2 MB. The
CPU usage was again similar when taking the higher CPU usage of “mediaserverd” in
account.

Especially the last application, PdSoundEngine, shows the limits of audio synthesis on

5The “classicsub” instrument is part of the “pd-starter-kit” package from http://gitorious.org/
pdlib/pd-starter-kit.

20

http://gitorious.org/pdlib/pd-starter-kit
http://gitorious.org/pdlib/pd-starter-kit

an iOS device: The PureData patch all the time consumes about 60% CPU usage'¢
because of the complex synthesizer algorithms used in the patches. In addition to that,
audible clicks and flaws occur with many notes activated. This is probably because of
the “voice-stealing” that [polypoly] does, when there are more instruments playing at
one time than voices are available. The high CPU consumption slows down all other
operations, for example for drawing the GUI, too. So this limits the complexity of audio
synthesis operations in the patches very much and this is also the reason, why only
two instruments have been implemented. There were more instruments available, but
including them in a patch would increase the CPU usage so much, that the application
would be unusable. In addition to that, the “classicsub” instrument patch was modified
to reduce its CPU consumption, because in its original version it did not work on the
device at all. It was using 16x-resampling, which caused the application to freeze upon
startup for about five seconds and eventually did not produce any sound. A quick look
with Instruments showed that the CPU usage was heavily going up at this moment be-
fore eventually it gave up and the audio system was shut down. What is very frustrating,
is that there is no way to identify such problems in a patch, which makes debugging
very difficult. In PureData, a patch will work perfectly, on the device the audio system
will crash and the only way to find out what is going wrong, is to delete more and more
objects to reduce its complexity until it works on the device.

In general, debugging a LibPd application is rather hard: If something does not work
correctly inside the PureData-patch, it is very hard to determine the problem, because
there is no information what went wrong and where. Of course, it is not possible
to use debugger-breakpoints inside the patch. Two things can help to narrow down
such problems: First and foremost, the patch should be tested stand-alone using the
PureData program with the same control messages that might also be sent by the
LibPd-App. Secondly, a delegate that implements the PdReceiverDelegate protocol
should be created. This delegate can implement the receivePrint: method for print-
ing debug messages to the console, which come from [print]-objects in the PureData-
patch.

Another problem that occurred in the last example application is that sometimes breaks
in the timing of the notes can be experienced, especially when there are other complex
computations going on, for example when a layer is being switched and the 3D flip anima-
tion is performed. This will cause the sequencer scheduler to get out of step and send new
notes too late. Maybe this problem could be solved using a different scheduling method
than using the NSObject method performSelector:afterDelay:.

Nevertheless LibPd seems to be a good alternative for using Core Audio, because it
makes it much easier to create synthesizer instruments and effects, using a wide variety
of already available synthesis components. It has some disadvantages, though: Espe-
cially the debugging process with switching between PureData and XCode all the time
is frustrating. Sometimes patches would work in PureData, whereas on the device they
would not produce any sound. The performance is surprisingly good, compared to pure

Y6This can be very clearly seen in Instruments when toggling the Audio On/Off button.

21

Core Audio applications, although a small overhead exists because of sending and receiv-
ing messages, interpreting patches and so on. Realtime polyphonic audio rendering with
multiple complex synthesizer instruments is hardly possible because the high CPU usage
will slow down the whole application. But as seen with tests using iPhoneAudioBend-
imgMultiwaves in section 2.1.3, it is possible to reduce CPU load heavily by optimizing
calculation algorithms and using, for example, precalculated wave tables instead of cal-
culating sine values in each render loop. If the resolution of such a wave table is high
enough, no difference is audible. PureData also provides reading such wave tables using
the [tabosc™] object.

2.3. Other libraries
2.3.1. MoMu / Synthesis ToolKit

MoMu stands for Mobile Music Toolkit and is a “new open-source software development
toolkit focusing on musical interaction design for mobile phones”. It has been presented
on the NIME conference in summer 2010 and was developed in the Center for Com-
puter Research in Music and Acoustics in Stanford University. It is published under a
BSD-like license. It does not only provide an API for audio synthesis, but “a unified
access to onboard sensors along with utilities for common tasks found in mobile music
development” [BHJO10]. These include:

e Full-duplex audio input and output

e Sound synthesis

e Handling of sensor input (accelerometer, location, compass)
e Handling of multitouch

e Networking (via OSC'7)

e OpenGL graphics

e Filters (for audio synthesis, graphics and other)

e Fast Fourier Transform

The authors of the library did not implement all these features anew, but combined
several other libraries and developed a unified C++-API for all of them. The most
interesting parts for this paper are the sound synthesis features of MoMu, for which
the authors added a port of the Synthesis ToolKit (STK) for i0OS. The STK has been
developed in the same department of Stanford University as MoMu and was already
released in 1995 but is still developed until now. It offers “an array of unit generators for

170SC stands for Open Sound Control, a content format for messaging between computers, electronic
instruments and other multimedia devices [FS09]

22

filtering, input/output, etc., as well as examples of new and classic synthesis and effects
algorithms for research, teaching, performance, and composition purposes” [CS99]. The
STK has been slightly modified by the MoMu team to cooperate with Core Audio on
iOS devices.

In terms of documentation and community support, the STK library makes a good
impression: A comprehensive tutorial covers the basic features. Several demo projects
that are included in the source download provide well documented examples. An API
documentation offers an overview about the available classes and their methods. Al-
though the library is already more than 15 years old, the mailinglist is still active and
a comprehensive archive exists. All of that can be found at the STK homepage at
https://ccrma.stanford.edu/software/stk/.

With help of the mentioned information resources, it was quite easy to integrate the STK
library into a Core Audio project, based on the iPhoneAudioSimple project that has been
introduced in section 2.1.2. The application is provided in appendix B.7. Profiling tests
did not show any noticeable difference in performance compared to LibPd, but more
advanced tests should be done.

All in all this library seems to be very promising. It provides a very comprehensive
set of features, is well documented and with 15 years of age a very matured library
with efficient algorithms. Still, just like LibPd, it cannot work wonders with the limited
resources of mobile devices and therefore virtual instruments that are developed using
the STK, should of course use as little resources as possible.

2.3.2. CocosDenshion

A very popular framework for games, 2D graphics and interaction is Cocos2D®. Since
games also need music and other audio output, Cocos2D also includes an API for playing
sounds: CocosDenshion. Since the API only supports sound playback but not synthesis,
only a small overview about its features will be given. Nevertheless, CocosDenshion is
a very helpful library, because audio sample playback can be much easier implemented,
than for example with Core Audio. The library supports sample playback, filters, pan-
ning and pitching. By using the pitching capabilities, it is possible to play different
notes of an instrument from one audio sample file. Of course, raising the pitch im-
plies shortening the tone and vice versa, because there is no time-stretching mechanism
implemented.'® The CocosDenshion API documentation states that up to 24 samples
playing in parallel are supported.

18See http://www.cocos2d-iphone.org/
19See [Ber99] for a comprehensive overview about time stretching and pitch shifting.

23

https://ccrma.stanford.edu/software/stk/
http://www.cocos2d-iphone.org/

3. Conclusion

Research and example applications clearly showed the limits of audio synthesis on an
iOS device. Although interesting libraries exist, it is hard to implement well sounding
virtual instruments without causing too much CPU and memory load. Existing virtual
instrument implementations that come with LibPd or the STK are often not designed
to work well with the limited resources of mobile devices. However, it would be very
interesting to know, how much audio synthesis applications can benefit from the new
improved hardware of the iPad 2 [Bigl1].

For the developer that aims on implementing audio synthesis on an iPad 1 or the iPhone,
several options exist now:

Using Core Audio without other libraries lets the developer maximum power over how
the sound is generated and minimum overhead, but requires to write a lot of ad-
ditional code since there are no audio synthesis functions provided by Apple.

Using LibPd lets the developer design the signal data flow with a visual tool, offers him
or her a wide set of existing signal processing functions but can cause problems on
the device which are very hard to debug.

Using MoMu/STK does also offer a lot of signal processing functions directly imple-
mented in C++.

Of course it should be always considered, if real-time audio synthesis is really necessary.
If the user should be able to interact with every parameter of the sound that is being
generated directly and just in time, then it is hard to bypass audio synthesis. But on
the other hand it is often sufficient when the user can only change parameters like pitch,
volume, stereo balance and maybe add some additional effects. In this case using audio
sampling, envelopes and simple filters are adequate and do not cause such a heavy CPU
load as generating each audio sample with complex signal processing algorithms. Since
the needed functionality for this scenario is included in LibPd and the STK, advanced
audio samplers could be built upon one of this libraries.

24

4. Appendix

A. References

[Ada09] Chris Adamson. An iphone core audio brain dump. Website, April

[Allla]

[AT11D]

[Alllc]

[AT11d]

[Allle]

[Ber99)]

2009. Available online at http://www.subfurther.com/blog/2009/04/28/
an-iphone-core-audio-brain-dump/; visited on March 18th 2011.

Apple Inc. Audio session programming guide: About configur-
ing audio behavior. Website, 2011. Available online at http://
developer.apple.com/library/ios/#DOCUMENTATION/Audio/Conceptual/
AudioSessionProgrammingGuide/Introduction/Introduction.html; vis-
ited on March 18th 2011.

Apple Inc. Audio session programming guide: Audio session categories.
Website, 2011. Available online at http://developer.apple.com/library/
ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/
AudioSessionCategories/AudioSessionCategories.html#/apple_ref/
doc/uid/TP40007875-CH4-S8W1; visited on March 19th 2011.

Apple Inc. Audio unit hosting guide for ios: About audio unit hosting.
Website, 2011. Available online at http://developer.apple.com/library/
ios/#documentation/MusicAudio/Conceptual/AudioUnitHostingGuide_
i0S/Introduction/Introduction.html; visited on March 18th 2011.

Apple Inc. Core audio overview: Introduction. Website, 2011.
Available online at http://developer.apple.com/library/ios/
#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/
Introduction/Introduction.html; visited on March 18th 2011.

Apple Inc. Core audio overview: What is core audio? Website, 2011. Available
online at http://developer.apple.com/library/ios/#DOCUMENTATION/
MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/
WhatisCoreAudio.html#/apple_ref/doc/uid/TP40003577-CH3-SW1; visited
on March 18th 2011.

Stephan Bernsee. Time stretching and pitch shifting of audio signals —
an overview. Website, August 1999. Available online at http://www.
dspdimension.com/admin/time-pitch-overview/; visited on March 13rd
2011.

[BHJO10] Nicholas J. Bryan, Jorge Herrera, and Ge Wang Jieun Oh. Momu: A mobile

music toolkit. In NIME, Sidney, Australia, 2010. Online at http://www.educ.
dab.uts.edu.au/nime/PROCEEDINGS/papers/PaperH1-H4/P174_Bryan.pdf.

25

http://www.subfurther.com/blog/2009/04/28/an-iphone-core-audio-brain-dump/
http://www.subfurther.com/blog/2009/04/28/an-iphone-core-audio-brain-dump/
http://developer.apple.com/library/ios/#DOCUMENTATION/Audio/Conceptual/AudioSessionProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/Audio/Conceptual/AudioSessionProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/Audio/Conceptual/AudioSessionProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioSessionCategories/AudioSessionCategories.html#/apple_ref/doc/uid/TP40007875-CH4-SW1
http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioSessionCategories/AudioSessionCategories.html#/apple_ref/doc/uid/TP40007875-CH4-SW1
http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioSessionCategories/AudioSessionCategories.html#/apple_ref/doc/uid/TP40007875-CH4-SW1
http://developer.apple.com/library/ios/#documentation/Audio/Conceptual/AudioSessionProgrammingGuide/AudioSessionCategories/AudioSessionCategories.html#/apple_ref/doc/uid/TP40007875-CH4-SW1
http://developer.apple.com/library/ios/#documentation/MusicAudio/Conceptual/AudioUnitHostingGuide_iOS/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/MusicAudio/Conceptual/AudioUnitHostingGuide_iOS/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/MusicAudio/Conceptual/AudioUnitHostingGuide_iOS/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html#/apple_ref/doc/uid/TP40003577-CH3-SW1
http://developer.apple.com/library/ios/#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html#/apple_ref/doc/uid/TP40003577-CH3-SW1
http://developer.apple.com/library/ios/#DOCUMENTATION/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html#/apple_ref/doc/uid/TP40003577-CH3-SW1
http://www.dspdimension.com/admin/time-pitch-overview/
http://www.dspdimension.com/admin/time-pitch-overview/
http://www.educ.dab.uts.edu.au/nime/PROCEEDINGS/papers/PaperH1-H4/P174_Bryan.pdf
http://www.educ.dab.uts.edu.au/nime/PROCEEDINGS/papers/PaperH1-H4/P174_Bryan.pdf

[Bigl1] John Biggs. Apple announces the ipad 2: A5 processor, front and back cam-
eras, available march 11. Website, March 2011. Available online at http:
//www.crunchgear.com/2011/03/02/apple-ipad-2-announcement/; visited
on March 24th 2011.

[Bol1l0] Tim Bolstad. iphone core audio part 1 — getting started. = Website,
March 2010. Available online at http://timbolstad.com/2010/03/14/
core-audio-getting-started/1; visited on March 18th 2011.

[CS99] Perry R. Cook and Gary P. Scavone. The synthesis toolkit (stk). In JCMC, Bei-
jing, China, 1999. Online at https://ccrma.stanford.edu/software/stk/
papers/stkicmc99.pdf.

[Far10] Andy Farnell. Designing Sound. MIT Press, September 2010.

[FS09] Adrian Freed and Andy Schmeder. Features and future of open sound control
version 1.1 for nime. In NIME, 04/06/2009 2009. Online at http://cnmat.
berkeley.edu/node/7002.

[HPH"11] Holzer, Princic, Hyde, Pais, Baker-Smith, Schebella, Steiner, Davison, and
Tahiroglu. Pure Data. FLOSS Manuals, March 2011. Online at http://en.
flossmanuals.net/pure-data/_booki/pure-data/pure-data.pdf.

[KC11] Avila Kevin and Adamson Chris. Core Audio. Addison-Wesley Professional, 1
edition, 2011.

[Kre09a] Johannes Kreidler. Loadbang: Programming Electronic Music in Pure Data.
Wolke Verlagsges. Mbh, March 2009.

[Kre09b] Johannes Kreidler. Programming electronic music in pd. Website, January
2009. Available online at http://www.pd-tutorial.com/english/index.
html; visited on March 23rd 2011.

[Lpm1la] LibPd project members. Libpd - gitorious. Website, 2011. Available online
at http://gitorious.org/pdlib; visited on March 3rd 2011.

[Lpm11b] LibPd project members. Libpd project wiki: Embedding pure data as a dsp
library. Website, 2011. Available online at http://gitorious.org/pdlib/
pages/Libpd; visited on March 25th 2011.

[Puc06] Miller S. Puckette. Theory and techniques of electronic music. Website, De-
cember 2006. Available online at http://crca.ucsd.edu/~msp/techniques/
latest/book-html/; visited on March 23rd 2011.

[RjD11] RjDj.me. Artists and labels on rjdj. Website, 2011. Available online at http:
//rjdj.me/music/; visited on March 3rd 2011.

[Roa96] Curtis Roads. The Computer Music Tutorial. MIT Press, April 1996.

26

http://www.crunchgear.com/2011/03/02/apple-ipad-2-announcement/
http://www.crunchgear.com/2011/03/02/apple-ipad-2-announcement/
http://timbolstad.com/2010/03/14/core-audio-getting-started/l
http://timbolstad.com/2010/03/14/core-audio-getting-started/l
https://ccrma.stanford.edu/software/stk/papers/stkicmc99.pdf
https://ccrma.stanford.edu/software/stk/papers/stkicmc99.pdf
http://cnmat.berkeley.edu/node/7002
http://cnmat.berkeley.edu/node/7002
http://en.flossmanuals.net/pure-data/_booki/pure-data/pure-data.pdf
http://en.flossmanuals.net/pure-data/_booki/pure-data/pure-data.pdf
http://www.pd-tutorial.com/english/index.html
http://www.pd-tutorial.com/english/index.html
http://gitorious.org/pdlib
http://gitorious.org/pdlib/pages/Libpd
http://gitorious.org/pdlib/pages/Libpd
http://crca.ucsd.edu/~msp/techniques/latest/book-html/
http://crca.ucsd.edu/~msp/techniques/latest/book-html/
http://rjdj.me/music/
http://rjdj.me/music/

B. Example projects

All example projects are zipped XCode-projects. Most of the applications will pro-
duce bad audio output in the Simulator and therefore it is advised to run them on a
device.

B.1. iPhoneAudioSimple.zip
This project contains a simple iPhone-App that produces a 440Hz sine wave using

Core Audio. The audio buffer is written in a render callback function. See class
AudioController for implementation details.

B.2. iPhoneAudioBending.zip

This project contains an iPhone App that allows to hit a note and changing the sound
of that note by tilting the device.

B.3. iPhoneAudioBendingMultiwaves.zip

Modified version of the above. Does not implement amplitude modulation but additive
synthesis by adding multiple detuned sine waves.

B.4. PdAudioSimple.zip

Just like iPhoneAudioSimple.zip, this project produces a 440Hz sine wave. It uses a
PureData-patch located under Resources/. There is a slider with which one can change
the master volume. The value of this slider will be sent to the PureData-patch repre-
senting an example on how to send messages to a patch.

B.5. PdAudioBending.zip

This project has the same features as iPhoneAudioBending.zip but uses LibPd as DSP
library.

B.6. PdSoundEngine.zip

A complete step sequencer application that uses LibPd is contained in this ZIP-file.

27

B.7. MoMuTest.zip

This project uses MoMu/STK to generate a sine wave on the one, and noise on the other
stereo channel. Sliders let the user fade between these channels.

28

	Introduction
	Fundamentals
	Overview about available audio synthesis libraries
	Methodology

	Analysed Software-Libriaries
	Core Audio
	Core Audio concepts
	Core Audio in practice
	Results

	LibPd
	LibPd concepts
	LibPd in practice
	Results

	Other libraries
	MoMu / Synthesis ToolKit
	CocosDenshion

	Conclusion
	Appendix
	References
	Example projects
	iPhoneAudioSimple.zip
	iPhoneAudioBending.zip
	iPhoneAudioBendingMultiwaves.zip
	PdAudioSimple.zip
	PdAudioBending.zip
	PdSoundEngine.zip
	MoMuTest.zip

