
HTW Berlin (University of Applied Sciences) WS 2011/2012
Media and Computing (Master)
Faculty of Business Sciences II

Paper

Building a Portable Low Cost
Tangible User Interface Based on a

Tablet Computer

Markus Konrad

March 11, 2012

Supervising tutor:

Prof. Dr. Klaus Jung

Contents

1. Introduction 2
1.1. Initial ideas . 2
1.2. Fundamentals . 4

2. reacTIVision framework and tablet computers 10

3. Implementation of a TUI Application on an Apple iPad 2 11
3.1. Backend: Modification of the reacTIVision framework 12
3.2. Frontend: An example application . 13
3.3. Performance and validation of the prototype 17

4. Conclusion 18

5. Appendix 19

A. References 19

B. Provided source code and software 22

1

1. Introduction

This paper covers the topic of how to use a modern tablet computer with its integrated
camera to implement a tangible user interface (TUI) , which can become very handy in
cases where battery-driven power supply, low weight and portability are crucial. It is im-
portant to mention, that the tablet is used both as application backend to process camera
input, identify and track tangible objects like markers, touches and so on, and as appli-
cation frontend that receives the processed information about these objects (like position
and rotation of markers) and provides feedback for the user.

For this work, the Apple iPad 2 has been used to implement and test this approach,
while other tablet devices running for example with the Android operating system, might
also be adopted to this field of application.

This work is separated into three parts: The first gives an overview about the basic
idea as the fundament of this work as well as a short introduction to the fundamentals
of tangible user interfaces. It covers basic image processing for fiducial recognition and
also the protocols used in such applications to provide the thereby extracted information
to the application frontend. The second part shortly describes the possible usage of
the reacTIVision framework on a tablet computer and the third part describes the
implementation of a prototype for the initially proposed idea. In the last section a
conclusion is made and further development is discussed.

1.1. Initial ideas

The basic idea for this work came with the introduction of tablet computers equipped
with integrated cameras (most of them in the front and back side of the device), that
are both powerful enough to perform complex image processing tasks while being small
in size, low at weight and cost and having a battery-driven power supply. In cases where
TUI devices needs to be moved around and have no constant power supply, like for
example in a mobile museum or a mobile art installation, most “classical” TUIs like the
Reactable Experience1, Reactable Live! 2 or Microsoft Surface 1.0 3 cannot be adopted,
because they are either not portable enough, do not have an (inbuilt) battery power
supply or are simply much to expensive.

As stated later in section 1.2.1, many table-top tangible user interfaces consist of a
(semitransparent) surface that can be touched and/or on which objects with markers
can be placed, a (infrared) light and a (infrared) camera that captures the backside of the

1Reactable Experience technical specifications: http://www.reactable.com/products/reactable_
experience/

2Reactable Live! technical specifications: http://www.reactable.com/products/live/
tech-specs/

3Microsoft Surface 1.0 technical specifications: http://technet.microsoft.com/en-us/library/
ee692114(v=surface.10).aspx

2

http://www.reactable.com/products/reactable_experience/
http://www.reactable.com/products/reactable_experience/
http://www.reactable.com/products/live/tech-specs/
http://www.reactable.com/products/live/tech-specs/
http://technet.microsoft.com/en-us/library/ee692114(v=surface.10).aspx
http://technet.microsoft.com/en-us/library/ee692114(v=surface.10).aspx

surface so that the markers and/or touches can be seen and a computational device that
processes the camera images to find out and track the markers and/or touches. After
processing the camera input, that tracking information is sent to a frontend application
that provides feedback to the user. The basic approach is now to let the tablet device
take over the parts of the backend and the frontend application to have a very compact
layout with only a portable single device and a light source for implementing a TUI
application.

The initial idea was that the tablet device can be placed right next to a semitransparent
surface and the tablets camera on the backside can capture the backside of the surface
via two mirrors as shown in figure 1. The captured image on the second mirror can then
be processed by the tablet and possible feedback can be given in an acoustic and visible
way on the tablet device itself. With this simple approach it is not possible to display
an image for feedback on the surface again, as most TUIs do, but it allows to use the
tablet device for feedback and as second interaction surface. The tablet would therefore
be extended by a bigger surface with tangible objects.

semitransparent surface

objects with markers

mirrormirror
light source

tablet computer
w/ camera

Figure 1: Initial layout of a TUI interface with a tablet computer

This layout could be extended as shown in figure 2 by adding a small projector to the
tablet (for example a USB-connected mini-projector) that might display an image on
the surface as feedback for the user, while the tablet device is completely hidden in the
module. This way, the whole device would act like a “classical” TUI. Of course this
would also induce problems with distortion of the captured camera image, because the
projected light would overlay it. Therefore an infrared light and a filter in front of the
camera needed to be used, so that only infrared light reflected from the markers is visible
to the tablet’s camera.

Based on this approach, the most simple way to implement a TUI on a tablet device,
would be to abandon visible feedback completely and only provide acoustic feedback.
This way the user can only hear information from speakers or headphones, which is
sufficient in many contexts, for example for installations in a museum or in schools. The
layout for this approach is shown in figure 3. It has been implemented as part of this
work and is documented in section 3.

3

tablet computer
w/ camera

semitransparent surface

objects with markers

infrared light source

projector

Figure 2: Extended layout with additional projector

tablet computer
w/ camera

semitransparent surface
objects with markers

light source

Figure 3: Simplified layout that only provides audio feedback

This simple and compact layout is both powerful and flexible, while further extension
is easily possible: For example one can imagine to add another tablet computer or a
display, which is visible to the user and acts as the frontend with visible feedback and
further interaction possibilities.

1.2. Fundamentals

This section shortly covers a few fundamentals regarding tangible user interfaces. For
more extensive research please refer to works like Tangible User Interfaces: Past, Present,
and Future Directions [SH10] by O. Shaer and E. Hornecker or the proceedings of Eu-
roHaptics 2010, Amsterdam [KvETvdH10].

4

1.2.1. Tangible User Interfaces

Since the late 90’s, the research field of human computer interaction (HCI) has more and
more focused on interaction and interface designs that free the user from being “chained”
to a mouse, a keyboard and a desktop computer. One of these new interaction approaches
is called Tangible Interaction, proposed by Hiroshi Ishii and his fellow researchers at the
MIT Media Lab in 1997 [IU97]. As stated by Eva Hornecker, this approach focuses on
user interfaces, that emphasize features like tangibility and materiality of the interface,
physical embodiment of data and whole-body interaction [Hor09]. So the general idea is
that not monitor screens with abstract windows, icons, menus and pointers (so called
WIMP interfaces) represent information but real physical objects, that in this way are
augmented with digital data. One of the first implemented application of this type was
the Marble Answering Machine by Durell Bishop4.

In contrast to classic WIMP interfaces, TUIs generally provide feedback for different
senses: Interaction with objects and touches on surfaces provide haptic feedback, (two or
three dimensional) visual and/or auditory feedback informs the user about the reactions
of the system. Because of this, there is a huge variety of interaction styles and concepts
that can be called tangible and they imply usage of very diverse technologies from
Computer Science and Electrical Engineering. Many of them for example make use
of algorithms from the field of Computer Vision, while others use radio-frequency based
technologies (e.g. RFID or NFC) or sensors and actuators. A comprehensive comparison
of these technologies is done in [SH10].

Not only the implemented technologies, also possible application domains differ very
much. B. Ullmer and H. Ishii specified twelve different application domains for TUIs, in-
cluding Information storage, retrieval, manipulation and visualization, Simulation, Mod-
elling, Education, Programming systems and Collocated collaborative work [UI00]. Shaer
and Hornecker also added Music and Performance as popular area of TUIs, especially
referring to the later described reacTable [SH10].

As seen, the mentioned application areas and implemented technologies are quite com-
prehensive. As the initial idea for this work is based on optical marker recognition, this
work concentrates on Computer Vision technologies for TUIs. The possible application
areas for the proposed idea seem to be ideal for educational purposes (e.g. usage in
(mobile) museums and workshops) and collaborative work (also including music and
performance), but have to be validated later.

1.2.2. Related TUI concepts and applications

The proposed idea is an adoption of an already successfully implemented TUI concept,
that uses optical markers (fiduciary markers or fiducials) attached to physical objects

4A video of how this machine works is available at http://www.formfollowsfuckingfunction.net/
2011/11/01/marble-answering-machine/

5

http://www.formfollowsfuckingfunction.net/2011/11/01/marble-answering-machine/
http://www.formfollowsfuckingfunction.net/2011/11/01/marble-answering-machine/

to recognize them individually and calculate their position, orientation and size. This
approach is called tag-based computer vision. Some other research projects have al-
ready explored the possibilities of such a system, many of them connected to interactive
music and composition. An example is the Music Table from the ATR Media Infor-
mation Science Laboratories that uses ARToolKit for tag recognition and allows one
or more users to create simple melodies and rhythms by arranging fiduciary marker-
cards [BMHS03].An earlier system, that has also partly been developed at ATR Labs
and implements a comparable interaction and tag recognition system, is the Augmented
Groove [PBK+00].

One of the most popular TUIs that implement tag-based computer vision is the re-
acTable, which is described by its creators as a novel multi-user electro-acoustic music
instrument with a tabletop tangible user interface [...] [JKGB05]. The image process-
ing backend of this system is the open-source computer vision framework reacTIVision,
which will be described later in greater detail. The fundament of reacTIVision’s fidu-
cial recognition system is the topological recognition approach which has initially been
invented and implemented in three tangible music toys called audio d-touch by E.
Costanza et al [CR03]. This approach will also be introduced shortly in the next sec-
tion. As stated in [BKJ05], this system could be strongly improved in terms of per-
formance and reliability and let to the development of the open-source computer vision
software library libfidtrack, that is now the default fiducial recognition system used in
reacTIVision.

Another well-known advanced TUI is Microsoft Surface. Version 1.0 has been released in
2008 and features a multi-touch and object tracking system based on five near-infrared
cameras [And11]. In 2012 the successor product Surface 2.0 had been introduced. In-
stead of a camera tracking system, it uses a technology called PixelSense. In Surface 2.0
each pixel has a sensor for infrared light that is reflected back from objects or fingers on
the table. With this system, it was possible for Microsoft to reduce the thickness from
56cm to 10cm [Mic11]. Unfortunately the details of the technology are not available to
the public and the hardware is of course much more expensive in production than the in-
dividual parts one needed for a classical camera based TUI.

There are lots of Augmented Reality (AR) applications available for mobile devices such
as the iPhone, iPad or Android tablets/phones, but they usually only provide additional
information in the users surroundings in a “video see-through” manner. In research
for this paper, no application could been found that uses a mobile device to realize a
table-top TUI.

1.2.3. Real-time fiducial recognition

The goal of real-time fiducial recognition is to find out the position, orientation and
scale of an optical marker as well as its unique identification features while providing
a decent update rate. Most of them also calculate the position and orientation of the

6

camera relative to the marker. Fiducial recognition algorithms can be divided into three
fundamental approaches: Color-based recognition, detecting geometrical features and
the topological approach. A color-based approach using colored rings as fiducials has
been proposed by Y. Cho and U. Neumann in 1998 [CN98]. H. Kato and M. Billinghurst
used square markers with a specific size, calculating the transformation and orientation
matrix for the camera (extrinsic parameters) from information about parallel sides of
the markers and the perspective projection matrix P (intrinsic parameters) [KB99].
The later can be described as the camera coordinates in 3D space in relationship to
the camera screen coordinates in 2D (the captured image). P is initially calculated
using a cardboard frame with a grid and calculating the relationship between the found
cross points of the grid and the camera coordinates (calibration). The whole process
is called homography and is also used in ARToolKit. To identify individual markers,
ARToolKit also does simple template matching after perspective correction of the found
markers.5

Topological approaches have mostly been used in non real-time, but Costanza et al.
[CR03] simplified the complexity of existing methods to enable topological fiducial recog-
nition to be done in real-time applications by using a binary threshold and introducing
constraints to the adjacency information of the fiducials. The algorithm can be summa-
rized in the following way:

1. Adaptive binary thresholding. Costanza et al. introduced an algorithm that uti-
lizes a laplacian filter for thresholding, so that changes from black to white or vice
versa tend to happen only on the image edges. The resulting binary image is less
prone to lighting changes than those calculated from “classic” adaptive threshold-
ing images and homogeneous areas are better segmented.

2. Building the Region Adjacency Tree or Scene Graph G. For a binary image an
adjacency graph can be constructed in a recursive procedure, that results in an
undirected graph with information about which image areas contain which subar-
eas, which again contain which sub-subareas and so on. Figure 4 shows an example
of such a graph.

3. Searching the Region Adjacency Tree for fiducials. The task is now to find out,
whether for each fiducial graph H, we can find an isomorphic subgraph in G. This
is a classical NP-complete problem in Computer Science [Epp99]. Costanza et al.
limited the graph-depth of the fiducial tree to 3 levels (root, branches and leaves),
which means that for each fiducial tree H, G must be traversed only once for
fiducial recognition. Because the fiducial is limited to only 3 levels of depth, it can
be easily and uniquely identified by creating an integer sequence that describes the
number of leaves in each branch.6

5Refer to http://www.hitl.washington.edu/artoolkit/documentation/vision.htm for further
information about ARToolKit’s Computer Vision Algorithm.

6For example the integer sequence (0, 0, 1, 2) indicates that the fiducial has 4 branches, two of them
with no leaves, another with 1 leave and the last one with 2 leaves.

7

http://www.hitl.washington.edu/artoolkit/documentation/vision.htm

R
0

1
a b c

R

0 1

a b c

Figure 4: Example of an adjacency tree

As Costanza et al. point out, a big advantage to geometrical fiducial recognition is that
the topological approach is very tolerant to deformations as long as their topology is
preserved, which allows them to be used on soft materials (e.g. clothes). Furthermore,
extra information can be encoded into the tags, because the recognition algorithm de-
codes the information structure of a tag and not just applies simple template matching
as for example in [KB99]. The overall recognition and performance results were very
satisfying and led to the development of the already mentioned d-touch tangible music
toys and the open-source software library libdtouch.

The proposed approach of Costanza et al. also has some shortcomings, that were pointed
out in [BKJ05] by Bencina et al. The main problem in d-touch is, that location and
orientation cannot to be calculated from the adjacency tree structure of the fiducials and
must be determined using traditional Computer Vision algorithms. Another problem is,
that the d-touch fiducial design makes it hard to minimize the fiducial size. Bencina et
al. solved these problems by making maximum use of the region adjacency graph and
the data encoded in the fiducials. The main differences to the work from Costanza et
al. are:

1. Calculating the fiducial location and orientation by using information encoded in
the fiducial. The center point of the fiducial is defined as the weighted average of
all leaf centers. The orientation vector is calculated from this point to the weighted
average of all back (or white) leaf centers.

2. Random fiducial tree generation. All generated fiducials that meet certain criteria
(number of nodes, maximum node depth, number of black and white leafs) form
a set.

3. Generated fiducial tree geometry. A genetic algorithm ensures that programmati-
cally generated fiducials have an optimized design according to centroid locations,
area, aspect ratio and symmetry.

8

4. Forming a canonical name for fiducials from Left Heavy Depth Sequences for recog-
nition in the scene graph. Depth sequences can be formed by traversing through
a graph and noting down the depth (amount of edges between this node and the
root) of each node. To prevent ambiguities, the traversing order always prefers
heavier nodes at first, meaning nodes with the strongest depth.

This approach has proven to be reliable and fast (over 4 times faster than d-touch
[BKJ05]) and at the same time it allows smaller fiducial sizes. It has been implemented
in libfidtrack which is part of the reacTIVision framework and will later be described in
more detail.

1.2.4. Protocols for TUI Applications

In many cases, it is reasonable to detach the TUI application backend (performing
the mentioned computer vision tasks) from the frontend (giving audio and/or visual
feedback to the user). This enables to run both interconnected application tasks on
different machines, even allowing to have multiple backend or frontend applications at
once.

The TUIO protocol [KBBC05] has been designed to meet these requirements in the con-
text of table-top TUIs. It is based on the Open Sound Control (OSC) protocol [WFM03]
and therefore available on any platform that supports this protocol. Like OSC, TUIO
usually uses UDP port 3333 for communication. The TUIO protocol has been designed
to be flexible, fast and insusceptible regarding possible packet loss. Therefore two main
message types have been defined: Alive and Set messages. The first type only includes a
list of objects that are currently placed on the surface. The second type contains infor-
mation about an object’s current state, such as its position, orientation and so on. By
frequently analyzing the object ids sent with the alive messages, the application fron-
tend can easily determine, which objects are currently present and keep a list of these
objects. Their properties can be updated by analyzing the set message of each object.
Each update state can be tagged with a unique frame sequence id, that can be submit-
ted using the third message type, fseq message. The updated TUIO 1.1 specification
also includes a fourth message type, source message, that allows “[...] the possibility of
multiplexing multiple tracker sources” [Kal09]. Besides transporting information about
fiducials (tagged objects in TUIO specification) and finger touches (cursors), the updated
specification introduces a third profile to communicate information about untagged ob-
jects (blobs). Using this profile, a TUI backend can for example inform the frontend
about basic geometrical features of a (non-fiducial) object that the user has laid on a
TUI surface, such as a mobile phone or a glass.

To make use of the TUI protocol, one can rely on working OSC implementations such
as oscpack 7 or liblo8. There are also specific TUIO protocol implementations, many of

7oscpack Open Source software library by R. Bencina: http://www.rossbencina.com/code/oscpack
8liblo Open Source software library by S. Harris and S. Sinclair: http://liblo.sourceforge.net/

9

http://www.rossbencina.com/code/oscpack
http://liblo.sourceforge.net/

them based on the mentioned OSC libraries9. The TUIO protocol is also implemented
in the already mentioned reacTIVision framework.

2. reacTIVision framework and tablet
computers

From all already mentioned Computer Vision or TUI libraries and frameworks, reacTIVision
is considered to be the one that fits best for the initially proposed idea in section 1.1. It
was shown in [BKJ05] and [Kal09], that the underlying algorithms for this framework
allow robust and fast fiducial recognition. As described on the website10, “reacTIVision
is a standalone application, which sends TUIO messages via UDP port 3333 to any
TUIO enabled client application”. This means, that reacTIVision is more a full-featured
TUI backend application, than a classic framework or software library and takes care of
all fiducial recognition tasks and sends the results via OSC to a frontend11. As shown
in figure 5, the framework is built around four main components, which in turn are all
separate Open Source projects12.

portvideo

display

lib�dtrack

display

SDL

display

oscpack

camera

display network

reacTIVision
input image

tracking inform.

TUIO messageoutput image (preview display
w/ recognized �ducials)

Figure 5: ReacTIVision software components

9A list can be found at http://www.tuio.org/?software
10reacTIVision Open Source framework: http://reactivision.sourceforge.net/
11Besides TUIO messages, reacTIVision is optionally capable to send MIDI information using the

portmidi library from http://sourceforge.net/apps/trac/portmedia/wiki/portmidi.
12To this point not mentioned libraries: portvideo camera framework (http://portvideo.

sourceforge.net/), SDL Simple DirectMedia Layer (http://www.libsdl.org/)

10

http://www.tuio.org/?software
http://reactivision.sourceforge.net/
http://sourceforge.net/apps/trac/portmedia/wiki/portmidi
http://portvideo.sourceforge.net/
http://portvideo.sourceforge.net/
http://www.libsdl.org/

The framework’s behavior can be considerably configured using a XML file for basic
settings or using keyboard commands for on the fly configuration of computer vision
parameters. The reacTIVision stand-alone application is available for Mac OSX, Linux
and Windows, but there is no implementation for mobile or tablet devices. Using this
framework therefore implies, that it must be at first ported to a mobile device operat-
ing system such as Android or iOS, meaning it should compile on the platform (with
ARM architecture), process images captured with the in-built camera and send TUIO
messages.

When trying to port a computer vision framework to tablet computers, mainly two
restrictions have to be considered: Limited hardware resources and fewer image qual-
ity of the in-built camera. As the proposed idea wants to unite application back-
end and frontend on one device, limited hardware resources are an important prob-
lem, because computational resources on the device must be sufficient for both, the
reacTIVision backend and an application frontend with audio and/or visual feedback.
Furthermore, low resolution cameras with low frame rates might result in bad fiducial
tracking on fast movements. These points must be later examined with test implemen-
tations.

3. Implementation of a TUI Application on an Apple
iPad 2

The goal for test-implementation of the mentioned idea was to find out, if it is possible
to deploy the reacTIVision framework on a tablet computer and if so, the recognition
rate of the fiducials as well as the overall performance of the system should be measured
and analyzed. For a test-implementation of the mentioned idea, a table-top TUI based
on an iPad 2 tablet computer was realized. The hardware specifications of an iPad 2
read as follows [Ngu11]:

• 1 GHz dual-core CPU

• 1 GB RAM (of which only up to 50% can be used by a single application)

• 2 cameras with the capability to capture images at 30 fps (one camera on the
backside with 720p and one on the frontside with VGA resolution)

As seen in figure 6, a semitransparent surface is mounted in a cube chassis and on the
bottom side the iPad sits in a fitting. Furthermore, a simple flashlight for illumination
is used. This is only an interim solution for a basic application test and should later be
replaced by infrared illumination.

11

semitransparent
surface

illustration w/
�ducial

illumination

iPad 2

Figure 6: The TUI table prototype and its components

3.1. Backend: Modification of the reacTIVision
framework

The reacTIVision framework runs on different platforms: Mac OSX, Linux and Win-
dows. It does not compile for Apple’s mobile operating system iOS though and so
some modifications had to be done to the source code. First of all, code for MIDI
support in reacTIVision had to be disabled, because iOS is not supported by the port-
midi library and resolving this problem is not part of this work. Secondly, a recent
beta version of the SDL library had to be integrated and compiled for iOS as described
in [Ron11]. Some modifications had to be done to the SDL so that images can be
displayed in landscape orientation mode and access to the root view controller is possi-
ble13.

A crucial step was to get camera images into the reacTIVision framework. The iPad 2
cameras are not supported by the portvideo camera framework, which is integrated into
reacTIVision and provides standard, platform independent access to cameras. Therefore
a new camera driver was written for portvideo, to support cameras for all iOS devices:

13Some missing statements in SDL uikitviewcontroller.m did prevent getting access to the
UIApplication root view controller.

12

iThingCamera. The driver mainly makes use of Apple’s AVFoundation-API.

With the mentioned modifications, it was possible to successfully compile and run
reacTIVision on an iPad 2. Fiducial markers were recognized, identified and tracked.
The successful deployment of the application backend now allowed to build a frontend
application.

3.2. Frontend: An example application

To test and analyze the usability and performance of a TUI application on an iPad 2 with
reacTIVision, a small “assignment game” was conceived, that should, as an example,
illustrate Jewish dietary laws or Kashrut [Ric11] laws. The main idea of such an assign-
ment game is that certain objects can be placed on labeled areas on a table. Regarding
the kashrut laws, these objects would be illustrations of different types of food, such as
eggs, fish or a cheeseburger and these illustrations could be assigned to four different
areas on the table: dairy, neutral, meat and unkosher food.

3.2.1. Control overlay for the GUI

Control bar

Areas for each
type of food

Fiducial placed
in neutral area

Figure 7: reacTIVision on iPad GUI

13

Figure 8: reacTIVision on iPad in calibration mode

The original reacTIVision application allows to control camera parameters and other
settings via keyboard commands. It is also possible to calibrate the camera using the
keyboard. Since neither using an external Bluetooth keyboard nor using the on-screen
keyboard would be convenient, a small overlay bar for application controls was created,
as seen in figure 7. It allows easy camera calibration by modifying the displayed grid in
figure 8 until it fits to a calibration sheet that can be downloaded from the reacTIVision
website14. Furthermore, the control bar allows to switch between the two iPad cam-
eras, set the display mode (input image, processed image, no image) and enable/disable
an overlay for the implemented frontend application. When the system will later be
extended by a projector that is connected to the iPad, only the frontend should be
projected on the surface and the controls should be hidden. This can be achieved by
compiling the application in release mode, thus disabling the controls GUI with prepro-
cessor switches.

14

TUIO command Parameters
source Source host that send this message
alive List of session ids for each recognized object
set Session id for the object, class id (fiducial number), po-

sition, angle, size, movement velocity vector, rotation
velocity, motion acceleration, rotation acceleration

fseq Unique frame index number

Table 1: TUIO commands and parameters

3.2.2. Receiving and processing TUIO messages

As described in section 1.2.4, the reacTIVision framework constantly sends TUIO mes-
sages in OSC format on each processed frame. The four TUIO commands of protocol
version 1.1 are outlined in table 1. To receive and process these messages, the frontend
application must listen on port 3333 of localhost for UDP packets, which contain OSC
messages that in turn must be parsed. With oscpack, reacTIVision already contains a
library that fulfills these requirements, because it is used by the backend to send out
these OSC-formatted TUIO messages in the first place. It is possible to utilize this
library now for reading them. To do so, a class TUIOMsgListener has been created,
that inherits from the abstract oscpack class OscPacketListener. The virtual method
ProcessMessage was implemented to analyze the parameters of a received OSC message
and transform it into a TUIO message format, which is represented by a struct with
a member named data of type union. This structure, as seen in listing 1, can hold all
four different types of TUIO messages.

TUIFrontendCore handles the main frontend application logic and also takes care about
incoming TUIO messages. Upon receiving a message, its method receivedTUIOMsg is
called. Depending on which TUIO command was received, it either adds or removes
TUI objects with the help of the submitted session ids (alive message) or updates their
properties (set message). In each case, a delegate object gets informed about the events.
In this case, the only observer of TUI events is the KashrutGame object, whose imple-
mentation is described in the next section.

typedef struct _TUIOMsg {

TUIOMsgType type; // tagged obj., cursor/touch or blob

TUIOMsgCmd cmd; // source , alive , set or fseq

union _data {

struct { // for cmd = source

char * addr; // string with source host

14See http://reactivision.sourceforge.net/#usage.

15

http://reactivision.sourceforge.net/#usage

} source;

struct { // for cmd = alive

int * sessIds; // array w/ length of numSessIds

unsigned int numSessIds; // number of sess. ids

} alive;

struct { // for cmd = set

int sessId; // session id

int classId; // fiducial marker id

TUIOMsgVec pos;

float angle;

TUIOMsgVec size;

float area;

TUIOMsgVec vel;

float angleVel;

float motAccel;

float rotAccel;

} set;

struct { // for cmd = fseq

int frameId; // unique frame seq. number

} fseq;

} data;

// ...

} TUIOMsg;

Listing 1: TUIOMsg structure

3.2.3. Implementation of the “Kashrut” game

In the class KashrutGame, the game logic is implemented.Four different fiducial ids that
can be used in this game are associated with a food type (diary, neutral, meat or un-
kosher). An illustration that has the fiducial with such an id applied to its backside, will
be recognized as one of the four food types. Furthermore, four “food areas” are defined,
one for each food type. These are the areas where the illustrations can be placed and will
be identified as either correctly or falsely placed. As mentioned in the previous section,
KashrutGame will be informed about TUIO events, therefore the TUIObjectObserver

protocol has been implemented with methods that are called upon adding, updating and
removing a TUI object. So each time a TUI object was added or updated (i.e. the po-
sition changed), its food type is determined by using its fiducial id and the current food
area in which it is placed is found out by checking its position. Depending on the result,
a sound is played to report either game success or failure.

16

3.3. Performance and validation of the
prototype

For validating a TUI system in terms of its technical behavior, recognition rate, stability
and speed are the most important features to analyze. These features should be as
independent as possible from environmental influences. For usage in a mobile (battery
powered) environment, CPU usage is also very important, because this affects the energy
usage and therefore the overall run-time of the system.

At first, the overall performance was measured by analyzing the frame rate of the system.
The achieved frame rates are about 4 to 5 frames per second, when the frames are also
displayed on the device’s screen, which is normally only enabled for debugging. Without
this, the achieved frame rate is doubled. The recognition speed is in both cases very high
and the feedback appears instantly to the user. Unfortunately, the recognition stability
is greatly affected by the bad image quality and low frame rate, that is delivered from
the iPad’s front camera. Once a fiducial is recognized it usually does not get lost by
the tracker as long as it is not or only slowly moved. But when the fiducial is moved
faster, the image delivered from the camera gets very blurry, which prevents the system
to recognize its fiducial structure and therefore gets lost for the tracker. When the
movement stops, the fiducial is again detected immediately.

Using Apple’s profiling software Instruments, CPU and memory usage was examined.
The former was very high, with CPU activity of about 163% on the dual-core processor,
resulting in about 82% overall activity. Memory usage was modest with about 20 MB.
The high CPU activity might result in slower frontend reactivity, when the frontend GUI
becomes more complex in future applications. Furthermore, the high CPU usage results
in higher energy consumption, but tests have shown, that the application consumes about
10% battery power per hour when running constantly, which is accaptable. For example,
playing a video nonstop on an iPad 2 causes about 11% battery power consumption per
hour [Gal11].

As a matter of fact, the system’s recognition rate and stability are for now very de-
pendent on the illumination of the room it is located in. Because camera and backside
illumination do not operate in infrared light, each external light source interferes with
the captured camera image and impedes proper fiducial recognition. This circumstance
can be easily avoided by using infrared illumination and an infrared filter in front of the
camera, which will be added later to the system but was not available at the time of
development. A further improvement would be to use the camera on the back side of
the iPad 2, since it delivers better images (720p compared to VGA resolution on the
front side).

For the implemented game, the achieved overall performance is completely sufficient
as well as the recognition speed and stability. The problem that fast moving fiducials
are not properly detected is not important for this type of application, but might have

17

negative influence on applications where the user must react in a faster way and move
objects on the table more often.

4. Conclusion

The overall results are very satisfying for the developed prototype. The usage of the
prototype and the implemented game is easy to understand and therefore suitable for
educational purposes. All technical equipment is completely hidden from the user and
the interaction is natural but at the same time appears “magical” and interesting to the
user.

The current system is compact, portable and can run for about 8h from battery power
only. The costs for hardware are quite low: About 430 EUR for an iPad 2 or com-
parable tablet computer. When extended with an infrared light, an additional bat-
tery and an infrared filter would be required, which means about 70 to 100 EUR
more.

Some problems that occurred with detection of the fiducials can be easily solved by
using infrared illumination. Fast marker movement with blurry marker features is al-
ways a problem for each computer vision algorithm. For now, the problems can only
be reduced by using better camera hardware. With the upcoming iPad 3 [pho12],
that is equipped with a better camera (1080p at 30 fps on the back side), better re-
sults should be achievable. Furthermore, with the more powerful CPU and the quad-
core graphics processor, it would be possible to create more complex frontend applica-
tions.

Regarding further development after integrating infrared illumination, the system should
be extended by an additional mini-projector for image projection on the table surface
to allow visual feedback for the user. Additionally, the system layout and mounting of
the iPad should be modified, so that the 720p-camera on the back side of the tablet can
be used instead of the VGA camera on the front-side.

For further development, a git source code management repository has been created at
https://github.com/internaut/iReacTIVision and all source code will be published
there.

18

https://github.com/internaut/iReacTIVision

5. Appendix

A. References

[And11] Nate Anderson. What lurks below microsoft’s surface? a brief q and a
with microsoft, 2011. http://arstechnica.com/gadgets/news/2007/

05/what-lurks-below-microsofts-surface-a-qa-with-microsoft.

ars This is an electronic document. Date of publication: May 30, 2007.
Date retrieved: February 29, 2012.

[BKJ05] Ross Bencina, Martin Kaltenbrunner, and Sergi Jordà. Improved topo-
logical fiducial tracking in the reactivision system. In Computer Vision
and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE
Computer Society Conference on, page 99, 2005.

[BMHS03] R. Berry, M. Makino, N. Hikawa, and M. Suzuki. The augmented com-
poser project: The music table. In The IEEE Int’l Symposium on Mixed
and Augmented Reality 2003 (ISMAR), pages 338–339, 2003.

[CN98] Youngkwan Cho and Ulrich Neumann. Multi-ring color fiducial systems
for scalable fiducial tracking augmented reality. In Proceedings of IEEE
1998 Virtual Reality Annual International Symposium (VRAIS ’98), page
212, 1998.

[CR03] E. Costanza and J. A. Robinson. A region adjacency tree approach to
the detection and design of fiducials. Vision, Video and Graphics (VVG),
pages 63–70, 2003.

[Epp99] David Eppstein. Subgraph isomorphism in planar graphs and related
problems. Journal of Graph Algorithms and Applications, 3(3):1–27,
1999.

[Gal11] James Galbraith. Lab report: ipad 2 battery life tests and garage-
band speed, 2011. http://www.macworld.com/article/158223/2011/

03/ipad2battery.html. This is an electronic document. Date of publi-
cation: Mar 15, 2011. Date retrieved: March 10, 2012.

[Hor09] Eva Hornecker. Tangible interaction, 2009. http://www.

interaction-design.org/encyclopedia/tangible_interaction.

html This is an electronic document. Date of publication: May 8, 2009.
Date retrieved: February 28, 2012. Date last modified: November 11,
2009.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless inter-
faces between people, bits and atoms. In CHI 97 Electronic Publications,

19

http://arstechnica.com/gadgets/news/2007/05/what-lurks-below-microsofts-surface-a-qa-with-microsoft.ars
http://arstechnica.com/gadgets/news/2007/05/what-lurks-below-microsofts-surface-a-qa-with-microsoft.ars
http://arstechnica.com/gadgets/news/2007/05/what-lurks-below-microsofts-surface-a-qa-with-microsoft.ars
http://www.macworld.com/article/158223/2011/03/ipad2battery.html
http://www.macworld.com/article/158223/2011/03/ipad2battery.html
http://www.interaction-design.org/encyclopedia/tangible_interaction.html
http://www.interaction-design.org/encyclopedia/tangible_interaction.html
http://www.interaction-design.org/encyclopedia/tangible_interaction.html

1997. Online at http://www.sigchi.org/chi97/proceedings/paper/

hi.htm.

[JKGB05] Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, and Ross Bencina.
The reactable. In International Computer Music Conference (ICMC)
2005 proceedings, 2005.

[Kal09] Martin Kaltenbrunner. reactivision and tuio: a tangible tabletop toolkit.
In Proceedings of the ACM International Conference on Interactive Table-
tops and Surfaces, ITS ’09, pages 9–16, New York, NY, USA, 2009. ACM.

[KB99] Hirokazu Kato and Mark Billinghurst. Marker tracking and hmd cal-
ibration for a video-based augmented reality conferencing system. In
Proceedings of the IEEE and ACM IWAR 1999, pages 85–94, 1999.

[KBBC05] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico
Costanza. Tuio: A protocol for table-top tangible user interfaces. In
Proceedings of the 6th International Workshop on Gesture in Human-
Computer Interaction and Simulation (GW 2005), 2005.

[KvETvdH10] Astrid M.L. Kappers, Jan B.F. van Erp, Wouter M. Bergmann Tiest, and
Frans C.T. van der Helm, editors. Haptics: Generating and Perceiving
Tangible Sensations International Conference, EuroHaptics 2010, Ams-
terdam, 2010.

[Mic11] How has surface changed?, 2011. http://www.microsoft.com/surface/
en/us/WhatsNew.aspx This is an electronic document. Date of publica-
tion: 2011. Date retrieved: February 29, 2012.

[Ngu11] Vincent Nguyen. ipad 2 review, 2011. http://www.slashgear.com/

ipad-2-review-09139014/. This is an electronic document. Date of
publication: Mar 9, 2011. Date retrieved: March 8, 2012.

[PBK+00] I. Poupyrev, R. Berry, J. Kurumisawa, M. Billinghurst, C. Airola, and
H. Kato. Augmented groove: Tangible augmented reality instrument
for electronic music. In ACM SIGGRAPH 2000 Conf. Abstracts and
Applications, page 77, 2000.

[pho12] phonearena.com. Apple ipad 3, 2012. http://www.phonearena.com/

phones/Apple-iPad-3_id5715. This is an electronic document. Date of
publication: Mar 7, 2012. Date retrieved: March 10, 2012.

[Ric11] Tracey R. Rich. Kashrut: Jewish dietary laws, 2011. http://www.

jewfaq.org/kashrut.htm. This is an electronic document. Date of pub-
lication: 2011. Date retrieved: March 9, 2012.

[Ron11] Armin Ronacher. Sdl 1.3 on ios, 2011. http://immersedcode.org/2011/
4/25/sdl-on-ios/. This is an electronic document. Date of publication:
Apr 25, 2011. Date retrieved: March 9, 2012.

20

http://www.sigchi.org/chi97/proceedings/paper/hi.htm
http://www.sigchi.org/chi97/proceedings/paper/hi.htm
http://www.microsoft.com/surface/en/us/WhatsNew.aspx
http://www.microsoft.com/surface/en/us/WhatsNew.aspx
http://www.slashgear.com/ipad-2-review-09139014/
http://www.slashgear.com/ipad-2-review-09139014/
http://www.phonearena.com/phones/Apple-iPad-3_id5715
http://www.phonearena.com/phones/Apple-iPad-3_id5715
http://www.jewfaq.org/kashrut.htm
http://www.jewfaq.org/kashrut.htm
http://immersedcode.org/2011/4/25/sdl-on-ios/
http://immersedcode.org/2011/4/25/sdl-on-ios/

[SH10] Orit Shaer and Eva Hornecker. Tangible User Interfaces: Past, Present,
and Future Directions. Now Publishers, 2010.

[UI00] B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces.
In IBM Systems Journal, volume 39, pages 915–931. IBM, 2000.

[WFM03] Matthew Wright, Adrian Freed, and Ali Momeni. Opensound control:
State of the art 2003. In Proceedings of the 2003 Conference on New
Interfaces for Musical Expression (NIME-03), Montreal, Canada, 2003.

21

B. Provided source code and
software

The prototype’s source code is contained in the ZIP-file iReacTIVison-src.zip as XCode
project. Latest source code can be obtained via git from https://github.com/internaut/

iReacTIVision.

22

https://github.com/internaut/iReacTIVision
https://github.com/internaut/iReacTIVision

	Introduction
	Initial ideas
	Fundamentals

	reacTIVision framework and tablet computers
	Implementation of a TUI Application on an Apple iPad 2
	Backend: Modification of the reacTIVision framework
	Frontend: An example application
	Performance and validation of the prototype

	Conclusion
	Appendix
	References
	Provided source code and software

